

LUVOTECH® eco+ PPS GF40 BK (REC50)

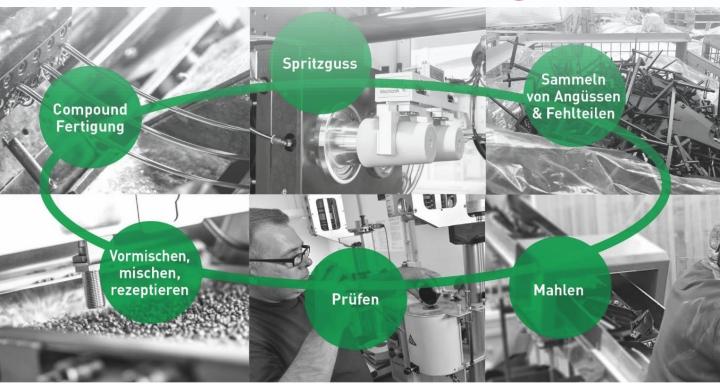
Hochleistungswerkstoff mit dem Besten aus zwei Welten

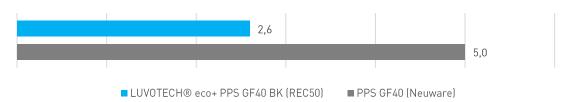
Die Nachfrage an Materialien mit niedrigerem CO₂-Fußabdruck steigt. Doch wie sieht der tägliche Umgang mit Rezyklaten in technisch anspruchsvollen Einsatzgebieten aus?

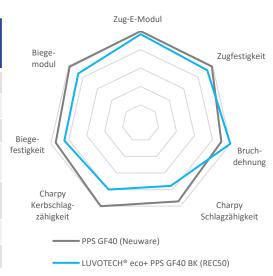
- Ist die technische Leistung des Materials für die Anwendung ausreichend?
- Können größere Toleranzen und Chargenschwankungen kompensiert werden?
- Stehen genügend Rohstoffe zur Verfügung, um den steigenden Bedarf langfristig abzudecken?

LEHVOSS bietet mit seinen Rezyklat-Mischungen Lösungen.

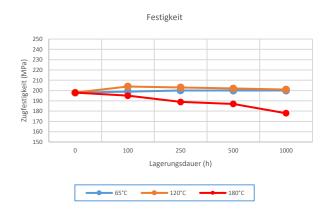
- Hohe und gleichbleibende LEHVOSS-Qualität
- Minimierung des CO₂-Fußabdruckes um rund 50%
- Erfüllt die Anforderungen von Automobil-Normen
- Umfangreiche Leistungsdaten
- Mischung aus 50% Neuware und recycelten Rohstoffe
- Gesicherte Rohstoffquellen (PIR)
- Deutliche Kosteneinsparung gegenüber Neuware

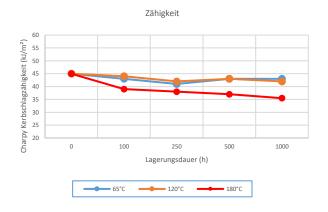

1 kg LUVOTECH® eco+ PPS GF40 BK (REC50) basierend auf 50% Recyclingmaterial reduziert die Treibhausgasemissionen im Vergleich zu Neuware PPS GF40 um ca. 50% auf 2,6 kg CO₂-eq pro kg.

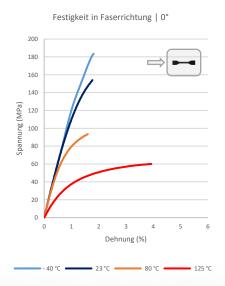

Grundlage der Berechnungen: DIN EN ISO 14040, DIN EN ISO 14044 und DIN EN ISO 14067

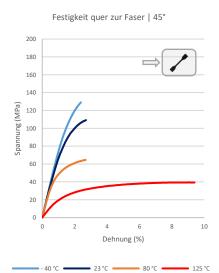

CO₂-Fußabdruck Vergleich der Treibhausgasemissionen in kg CO₂-eq pro kg Material

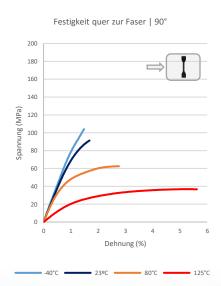
Technische Leistungsdaten


Nahe an Neuwaren, erfüllt Automobil-Normen

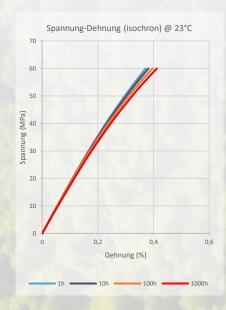

Eigenschaft		PPS GF40 (Neuware)	LUVOTECH [®] eco [†] PPS GF40 BK (REC50)	VW 50137 PPS-7-A (2020-05)
Zug-E-Modul	MPa	15500	15000	-
Zugfestigkeit	MPa	198	185	min. 165
Bruchdehnung	%	1,8	2	min. 1,3
Charpy- Schlagzähigkeit	kJ/m²	50	40	min. 30
Charpy- Kerbschlagzähigkeit	kJ/m²	10	8	min. 7
Biegefestigkeit	MPa	284	255	min. 250
Biegemodul	MPa	14800	13000	-

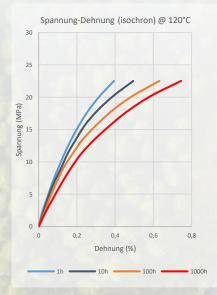

Mechanik nach Wärmelagerung

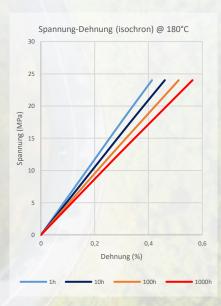




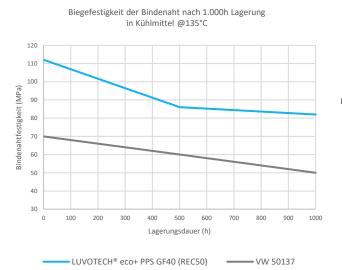
Mechanik zur Faserrichtung unter Temperatureinfluss

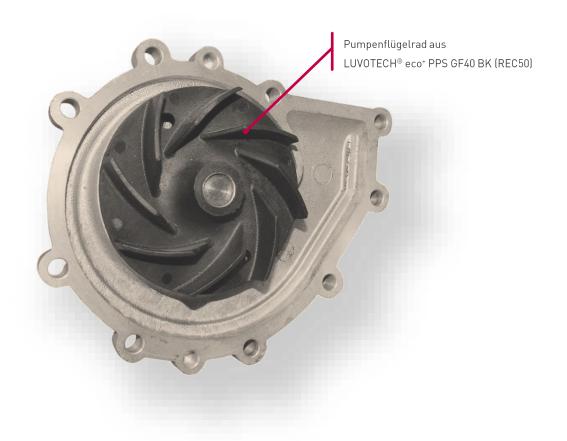






 $\hbox{Differenz zu Datenblattwerten [23 ^{\circ}C \mid 0^{\circ}] \; gem. ISO \; 527 \; sind \; im \; Verfahren \; zur \; Herstellung \; der \; Probekörper \; begründet. }$


Kriechverhalten bei unterschiedlichen Temperaturen



Mechanik nach Lagerung in Kühlmittel Anforderungen gemäß VW-Norm 50127

Europe & Head Office

Lehmann&Voss&Co. KG Alsterufer 19 20354 Hamburg | Germany

Phone: +49 40 44 197 250 Email: info@lehvoss.de

Technical Compound Division

WMK Plastics GmbH Lueneschloss Strasse 42 42657 Solingen | Germany Phone: +49 212 38 24 180 Email: info@wmk-plastics.de

