

Presentation

Membrane Theory

Lehmann&Voss&Co. KG

Alsterufer 19

20354 Hamburg

Established Technology for future challenges

Conventional filtration

Asymmetric membrane pore technology

The asymmetric membranes have an extremely smooth surface and very short capillaries.

The pores of the membrane support structure have a "conical" profile thus eliminating blockage.

Symmetric membrane pore technology

The pores of a symmetric membrane have a "cylindrical" profile. The capillary extends through the entire filter.

The risk of irreversable membrane plugging is high due to particle entrappment.

Relative particle size

Membrane structure

Cross Flow filtration concepts

Membrane fouling

- Flux decline over time (constant @, P, C and T)
- Molecular Attraction of feed with membrane
- Most fouling is reversible with cleaning
- Irreversible fouling is rare

Mechanisms of fouling

- Submicron surface deposition
- Membrane/solute interaction
- Crystallization in or on the membrane
- Precipitation on the surface

Selective membrane retention

Membrane hydrodynamic limitations

Ultrafiltration process parameters

Effect of temperature on flux

Temperature (T)

Effect of flow on flux

Recirculation Flow (Q)

Conditions: Constant Pressure and Concentration

Effect of time on flux on various streams

Effect of pressure on flux

Transmembrane Pressure (Ptm)

Conditions: Constant Flow and Concentration

Effect of concentration on flux

19

Restitance and mass transfer models of flux

Transmembrane Pressure (Ptm)

Cross Flow membrane filtration batch processing

Concentration (Cg)

CROSS-FLOW MEMBRANE FILTRATION

EFFECT OF pH ON FLUX

Stages in series continuous processing

Concentration (Cg)

Cross Flow membrane filtration controling factors

- Transmembrane pressure
- Fluid flow across the membrane
- Viscosity
- Temperature
- Concnetration of retained particles
- Pretreatment conditions
- Fouling characteristics of the feed
- Microbiological activity in the feed
- Plant operator

UF operating precautions

- 1. Do not let membranes dry out.
- 2. Do not use silicone based deformers.
- 3. Do not dead head the modules.
- 4. Do not over-concentrate during batchdown.
- 5. Do not exceed maximum temperature specification.
- 6. Be aware that increasing pH and temperature decreases membrane life.
- Avoid water hammer.
- 8. Minimize the time the system sits idle with process fluids on the membrane.
- 9. Do not allow the modules to freeze after startup.
- 10. Operate the system in accordance with the guideline.

Components for a successful membrane filtration

Ultrafiltration systems design - Recirculation pump selection

RECIRCULATION FLOW RATE

Cross Flow Filtration concept importants formulars

TRANSMEMBRANE Pavg. =
$$\frac{\text{Pin+Pout}}{2}$$

CONVERSION (%) =
$$\frac{\text{Vf-Vr}}{\text{Vf}} = \frac{\text{Vp}}{\text{Vf}} = 1 - \frac{1}{\text{CF}}$$

% RETENTION =
$$(1 \frac{\text{[PERMEATE]}}{\text{[RETENTATE]}}) \times 100$$

PRESSURE DROP
Pdelta = Pin - Pout
RELATION dP TO Q

Pilot data collection important parameters

- 1. Define flux concentration of retained species
 - assess flux over complete range of concentration
 - collect concentration and permeate samples
- 2. Define effect of flow and pressure on flux
 - assess standard operating conditions
 - perform flow and pressure excursions
- 3. Assess flux cecline over time.
 - run at constante concentrating by recycling permeate
 - factor out effects of fouling
- 4. Continuous pilots
 - run multiples stages if possible
 - run at constant x to study fouling
- 5. Establish reproducibility of process runs.
- 6. Establish cleanability of the modules.

Kindney operations

KIDNEY OPERATIONS

Accumulated Oils, Fats, Suspended Solids

Lehmann&Voss&Co. KG

The consequence of experience of

a successful business model.

Established Technology for future challenges