Product	Chem. Description	Features and Benefits
SONGNOX® L101	Tetrakis[methylene-3-(3,5-di-tert-butyl-4'-hydroxyphenyl) propionate]methane	Ashless solid with extremely low volatility and high thermal stability. Excellent for greases and synthetic lubricants. Approved by FDA for use in blending food grade lubricants.
SONGNOX® L107	Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate	High molecular weight AO with good thermal stability. Ashless solid with low volatility. Very effective in lubricants based on natural oils. Good deposit control performance in engine oils.
SONGNOX® L109	Hexamethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]	Excellent thermal stability and high molecular weight. Especially recommended in mineral oil based industrial lubricants. Approved by FDA for use in blending food grade lubricants
SONGNOX® L115	Thiodiethylene bis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate]	Ashless solid with low volatility and excellent thermal stability. Provides multifunctional activity as primary and secondary AO. Approved by FDA.
SONGNOX® L135	Benzenepropanoic acid,3,5-bis(1,1-dimethylethyl)-4-hydroxy-, C7-9- branched alkyl esters	Easy to handle liquid with excellent solubility in mineral oil. Provides superior protection against oxidation and deposit formation.

Product	Chem. Description	Features and Benefits
SONGNOX® L224	Dilauryl thiodipropionate	Secondary thioester antioxidant. Decomposes and neutralizes hydroperoxides, formed by auto- oxidation. Synergistic effects in combination with phenolic antioxidants. Solid.
SONGNOX® L226	Ditridecyl thiodipropionate	Secondary thioester antioxidant. Decomposes and neutralizes hydroperoxides, formed by auto- oxidation. Synergistic effects in combination with phenolic antioxidants. Liquid form.
SONGNOX® L416	Tris(2,4-di-tert-butylphenyl) phosphite	Ashless solid with low volatility. Excellent for mineral and synthetic lubricants in transportation and industrial application.
SONGNOX® L570	Mixture of octylated & butylated diphenylamine	Controls lubricants viscosity increase due to oxidation. High nitrogen content and excellent protection against thermo-oxidative degradation. Approved by FDA.
SONGNOX® L670	Bis(nonylphenyl)amine	Excellent protection against thermo- oxidative degradation with effective control over viscosity increase due to oxidation.